

Int.J.Curr.Res.Aca.Rev.2016; 4(7): 76-88

 76

Introduction

The MAC Sub-layer of data link layer is

designed using register transfer logic with

the help of Verilog HDL. Data link layer

functionality of CAN controller is divided

into smaller blocks like Data and Remote

Frame generator, Serial frame transmitter,

Bit synchroniser for receiver, Arbitration

controller, Message process controller etc.

These blocks are modelled into RTL logic

with help of Verilog HDL. RTL

implementation consists of Behavioural and

combinational logic implementation of the

digital design. All these RTL blocks are

structurally combined in the top module to

implement the CAN controller functionality

completely.

Each design module of CAN controller is

optimised with respect its logic utilisation.

Advanced Level Modelling and Simulation of CAN Controller for its

Implementation in FPGA (SoC) with Synthesis and Timing Results for

Integrated CAN Node

Duhita B. Paratane
1*

, A.M. Patil
2
 and Jitendra P. Chaudhari

3

1,2

M.E. Electronics and Telecommunication, J.T. Mahajan College of Engineering, Faizpur,

India
3
Charusat Space Rsearch and Technology Center, Charotor University of Science and

Technology, Changa, Anand, Gujrat, India

*Corresponding author

A B S T R A C T

Conventional CAN controller is integrated in the SoC (FPGA + Hard

Processor) Chip. The CAN protocol functionality is implemented in the FPGA

fabric along with block memory utilisation as buffers and is controlled by

ARM Processor (Hard Processor System) present in the same chip (Duhita et

al., 2016). The CAN controller has been designed using Verilog so it can be

targeted with different implementation technologies in custom designs. In this

paper the synthesis and timing results of the implemented integrated CAN

controller are discussed. The MAC (medium access Control) Sub-layer is

designed separately using Verilog HDL and synthesized in FPGA

programmable fabric of the SoC Chip. MAC layer i.e. CAN controller logic

utilisation and timings along with timing constraints are discussed here.

Control and application part of the CAN module is done in hard processor

system (HPS) Cortex A9 microprocessor. The HSP system‟s specifications are

also given in this paper. The CAN controller module is designed using

Quartus Prime Lite software in Cyclone V SoC “5CSEMA5F31C6N” device.

KEYWORDS

Synthesis, Placement

and Routing, Timing

constraints, RTL

(Register Transfer

logic), CAN

(Controller area

Network) controller,

CAN node, FPGA,

SoC, HPS, Verilog

Modules.

International Journal of Current Research
and Academic Review

ISSN: 2347-3215 Volume 4 Number 7 (July-2016) pp. 76-88

Journal home page: http://www.ijcrar.com
doi: http://dx.doi.org/10.20546/ijcrar.2016.407.010

http://www.ijcrar.com/
http://dx.doi.org/10.20546/ijcrar.2016.407.010

Int.J.Curr.Res.Aca.Rev.2016; 4(7): 76-88

 77

Timing constraints are applied to this design

to obtain the maximum working frequency

and minimum register to register

propagation time. Combinational logic

between two registers is managed in such a

way that register to register propagation time

should be very less to achieve maximum

possible operating frequency.

This CAN controller module from

programmable logic of SoC is connected

with the Cortex A9 ARM Hard processor

system (HPS) with AXI interface. This

connection is done via an AXI to Avalon

Memory Mapped bridge. This Avalon MM

bridge takes care of arbitration if multiple

CAN controllers are connected to single 32

bit light weight HPS to FPGA master.

Controller Area Network (CAN) is a serial

communications protocol that efficiently

supports distributed real-time control with a

very high level of data integrity (Bosch

Controller Area Network (CAN) Version 2.0

PROTOCOL STANDARD). It is used in

wide variety of embedded application like

industrial automation due its advantages

such as efficiency, high flexibility, low cost

and simplicity [Obermaisser et al., 2010].

Home automation system, medical devices,

industrial application are new control

networks which will use this higher levels of

integration into single chip to reduce the

size, the power consumption and the price of

the final system [de Lucas et al., 1999].

The ability of integrating the protocol

handling in a single chip together with a

microprocessor core, memory and other

peripherals are the features of System on

Chip concept that are utilised in this design

to achieve flexibility of design. It also

enhances the performance of overall system

since HPS ASIC is combined with FPGA

with latest semiconductor fabric design

technology.

Higher operation speed due to parallel data

processing and high bandwidth interconnect

backbone, increase in reaction time of

overall system, Real time data processing,

configurable priority CAN controller are the

special characteristics of this integrated

CAN controller design.

Next section describes the detail design of

the CAN controller which is based on the

CAN protocol versions 2.0A and 2.0B. It

explains the functionality of each module

implemented in the design. It also gives

explanation about design of HPS to CAN

controller slave interface module which acts

as the bridge between them. HPS

functionality of controller data management

is also explained below. Beside this several

conclusions are drawn at the end.

CAN Controller design

CAN features Overview

CAN Networks have several features which

make them well suited for the controller

applications. Below mentioned

characteristics highlights suitability of CAN

networks better than other network

protocols.

1. Real time applications with serial bus

communication.

2. Easy configuration and modification

3. High reliability and better performance.

4. Cost efficient in designing as well as in

implementation.

5. Ideally infinite network size but limited

up to 100 running nodes due to protocol

restrictions.

6. Higher transmission rate and could be

achievable to 1 GHz by integration.

7. Multicast reception with time

synchronisation.

8. Non Return to Zero (NRZ) coding with

bit stuffing feature.

Int.J.Curr.Res.Aca.Rev.2016; 4(7): 76-88

 78

9. Data security using error detection

codes.

10. Automation detection of transmission

errors and retransmission feature to

avoid data loss.

11. CSMA/CD mechanism implementation

to determine the priority and avoid

collisions.

12. Event driven communication.

Below given diagram Figure.1 shows the

sample of the CAN frame format for the data

transmission. Remaining all frames are

somewhat similar to this frame.

Data frame of CAN controller could be of

two types depending upon the version of

protocol it supports. It uses 11 bit identifier

for CAN 2.0A and 29 bit identifier for CAN

2.0B in arbitration field as shown in

Figure.1.

RTR bit is used to indicate the Remote

transmission Request for Remote frame.

This frame does not have data in it. Data

length code DLC is 4 bit field which denotes

the number of bytes of data present in that

particular frame. Number of data byte could

be from 0 to 8.

Remote frame has same structure as that of

the data frame only it does not carry any

data in it. It request for the data from the

particular node for which it is intended. A

node acting as the receiver for certain data

can stimulate the relevant source node to

transmit the data by sending remote frame.

Detail design diagram of CAN controller is

shown in Figure.2. Explanation of each

Functional block and its functionality is

given below.

Hard Processor System (HPS)

It is the interface application written in C for

Host CPU which provides which provides

the CAN controller with the data to be

transmitted across the CAN bus and also

reads the received messages from the

controller. Processes the received data and

take the actuator action if needed.

Avalon MM Slave interface

This block communicates with the HPS light

weight master via 32 bit Avalon Memory

Mapped interface. This block is

synchronised with HPS clock. It receives the

data to be transmitted on CAN bus. It also

configures the parameters of CAN

controller. And sends the CAN frame

received data to Host processor. The

interface between the host application and

the CAN controller consists of an 8-bit data

bus to transfer the message to the

controller‟s transmit buffer, an 8-bit data

read bus which reads the messages received

from the controller‟s receive buffers and

status signals to perform the requisite

handshaking.

Parameter Register

The code parameter, mask parameter and the

Re-Synchronous Jump Width (SJW)

specified for the CAN node are stored in this

register block.

Transmit Buffer

There are ten transmit buffers. Each buffer

can hold one byte of data. The Avalon MM

interface receives the message to be

transmitted from the host CPU and stores

the message in the transmit buffer before

further message processing takes place.

Data and Remote Frame Generator

Data and Remote Frame Generator is

responsible for generating the message

frame as specified by the CAN protocol. It

Int.J.Curr.Res.Aca.Rev.2016; 4(7): 76-88

 79

take the data from the transmit buffer block

and generates the required basic CAN

frame.

Parallel to serial convertor

This unit serialises the message generated by

Frame generator to facilitate the CRC

computation

Transmit CRC generator

This module computes the CRC of the

serialised message before transmission of

the data / remote Frame. The generated CRC

frame is appended to the message being

transmitted before bit-stuffing is performed.

Bit stuffing Module

This unit performs bit-stuffing as specified

by the CAN protocol, making the message

suitable for transmission across the CAN

network. If five consecutive equal bits

arrives in message frame then to create

additional signal transitions, and to ensure

reliable reception one opposite polarity bit

is added during bit stuffing mechanism.

Error and Overload Frame generator

Generates Error or Overload frame

whenever error or overload condition

occurs. Error containment measures are also

taken care of to ensure the accuracy of the

controller‟s performance and its further

participation in the CAN network.

Serialised Frame Transmitter

This unit transmits the data/ remote frame

or the error / overload frame or a dominant

bit during the acknowledgment slot based

on the prevalent conditions.

Message Processor

This is the central unit which provides all

the control and the status signals to the

various other blocks in the controller. This

unit routes the different signals generated in

various blocks to the necessary target

blocks.

Arbitration Controller

The arbitration controller is responsible for

indicating the arbitration status of the node.

Bit Synchroniser

This unit performs the bit timing logic

necessary for synchronizing the CAN

controller to the bit stream on the CAN bus.

The recessive to dominant transition edges

present on the received bit stream are used

for synchronization and re-synchronization.

Bit De-stuffing Block

This unit performs the de-stuffing of the

messages received from the CAN network.

This unit also extracts the relevant

information from the received message.

Receive CRC generator

CRC generator block also computes the

CRC of the received message after message

reception. It gives this computed CRC to

CRC checker block for message error

verification.

CRC Checker

This module compares the generated CRC

for the received message with the CRC

frame received by the node. An error is

generated if the two CRC values do not

match. And if there is CRC match then the

message forwarded for further processing

Bit Stuff Monitor

This unit signals a stuff error when six

consecutive bits of equal polarity are

detected in the received message.

Int.J.Curr.Res.Aca.Rev.2016; 4(7): 76-88

 80

Form Checker

A form error is generated if any of the

fixed-form fields in a received CAN

message is violated. The fixed form fields

include the CRC delimiter, ACK delimiter

and the EOF field.

Bit Monitor

A CAN node acting as the transmitter of a

message, samples back the bit from the

CAN bus after putting out its own bit. If the

bit transmitted and the bit sampled by the

transmitter are not the same, a bit error is

generated.

Acknowledgment Checker

During the transmission of the

acknowledgement slot a transmitter

transmits a recessive bit and expects to

receive a dominant bit. If the node receives

a recessive bit in the acknowledgement slot

an ACK error is signalled.

Acceptance Checker

This unit checks the incoming message ID

and determines if the received frame is

valid.

Receive Buffer

There are two 10 byte buffers that are used

alternatively to store the messages received

from the CAN bus. This enables the host

CPU to process a message while another

message is being received by the controller.

Design and methodology

CAN controller described above is has been

designed in verilog environment. The CAN

controller and HPS to FPGA interface is

converted to Qsys component and the whole

system is interconnected in Qsys tool. The

Qsys system integration tool saves

significant time and effort in the FPGA

design process by automatically generating

interconnect logic to connect intellectual

property (IP) functions and subsystems.

The main aim of this CAN controller is to be

reused in different target technologies. Due

to the nature of the application the design has

been made at the Register Transfer Level, at

the architectural design phase.

Figure.3 show the set of software tools used

to design the CAN controller. RTL design is

written in Notepad ++ editor where the

versioning of the source code is done very

easily.

For the simulation purpose we have use

Altera Modelsim Starter Edition version

10.4b. During simulation we have

instantiated four CAN controller and

provided input data to all of them

simultaneously with different 11 bit

identifier. This is done to give the clear

understanding of arbitration, overload

condition etc.

RTL implementation of the CAN node is

done in software Quartus Prime version

15.1.0. in step by step strategy.

In first step HPS-FPGA interface code

“can_to_avalon_intf.v” is generated as Qsys

Avalon MM slave. Similarly CAN

Controller top module is taken into Qsys as

the conduit Qsys component. In third step

that Qsys components are instantiated in

Qsys along with hard processor system

(HPS). Then they are connected with each

other to generate a CAN Node as shown in

Figure 4.

After complete system generation comes the

logic realisation and FPGA configuration of

Int.J.Curr.Res.Aca.Rev.2016; 4(7): 76-88

 81

the system. It involves Analysis and

Synthesis, Placement and Routing, creation

of programmable file, System timing

analysis and its configuration in FPGA. Each

and every step of logic realisation is

explained below.

Analysis and Synthesis

During this step compiler analyze the

design‟s verilog files and syntheses the logic

written in them. Analysis and synthesis first

checks the design files and the overall design

for errors, and builds a single design

database that integrates all the design files in

a design hierarchy. Analysis & Synthesis

performs logic synthesis to minimize the

logic usage of the design, and performs

technology mapping to implement the design

logic using device resources such as logic

elements. Finally, Analysis & Synthesis

generates a single project database

integrating all the design files in a design.

Fitter- Placement and Route

Using fitter compiler places and routes the

logic of a design into a device which is

selected. The Fitter runs an Auto Fit

compilation by default. In Auto Fit mode,

the Fitter attempts to meet timing constraints

and not to beat them; it automatically

decreases compilation time by turning off

some optimization steps if they are not

required for the design to meet the timing

constraints. One can also decrease

compilation time by directing the Fitter to

reduce Fitter effort after meeting a design's

timing requirements, or to make only one

fitting attempt.

Assembler

Assembler converts logic cell, and pin

assignments into a programming image for

the device. The Assembler is the Compiler

module that completes project processing by

converting the Fitter's device, logic cell, and

pin assignments into a device programming

image, in the form of one or

more Programmer Object Files

(.pof), SRAM Object Files

(.sof), Hexadecimal (Intel-Format) Output

Files (.hexout), Tabular Text Files (. ttf),

and Raw Binary Files (.rbf), from a

successful fit. In our case we use the .sof file

to programme and configure our device.

Timing Analysis

The TimeQuest Timing Analyzer software

tool analyzes, debugs, and validates the

timing performance of all logic in a design.

Timing analysis measures the delay of a

signal reaching a destination in a

synchronous system. The TimeQuest Timing

Analyzer is a powerful ASIC-style timing

analysis tool that uses industry standard

constraint, analysis, and reporting

methodologies. The Quartus II Fitter

optimizes the placement of logic in the

device in order to meet timing constraints.

During timing analysis, the TimeQuest

analyzer analyzes the timing paths in the

design, calculates the propagation delay

along each path, checks for timing constraint

violations, and reports timing results as slack

in the Report pane and in the Console.

Thus the verilog file gets synthesized into the

digital logic and the binary file is generated

which we can use to configure Cyclone V

FPGA to work as the CAN node. After

complete compilation of the Quartus prime

project the tool generates Analysis and

Synthesis report, Fitter report, Assembly

report, and timing analysis report.

Synthesis and Analysis report gives

information about project design ie top level

entity name, device family, logic utilisation,

total number of registers, total logic

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
http://quartushelp.altera.com/15.0/mergedProjects/analyze/sta/sta_about_sta.htm
http://quartushelp.altera.com/15.0/mergedProjects/analyze/sta/sta_com_report.htm
http://quartushelp.altera.com/15.0/mergedProjects/analyze/sta/sta_com_console.htm

Int.J.Curr.Res.Aca.Rev.2016; 4(7): 76-88

 82

elements, total device pins the logic is using.

It also gives the information about number of

PLL used, memory blocks required to

implement the logic etc.

Fitter report gives the information about

logic elements placement and routing. It

includes exact values of number resources

utilised, percentage of routing resources,

total block memory bits, logic partition

report, number of preserved nodes, IO

assignment report, also reports setting and

values for the nominal core voltage, junction

temperature report.

Table.1 Synthesis Result of CAN controller and CAN node

Module Name of

CAN Controller

Number of

Combinational

Logic

Number

of

Sequential

registers

ALM

Needed

Comments

accp_checker:id_check 9 2 5.2 Acceptance

Checker logic for

identifier

ack_checker:ack_err_chk 2 1 1.3 Acknowledgement

checking logic

arbtr_ctrl:arbtr_sts_ctrl 9 2 5.5 Arbitration control

logic

bit_destuff:dyestuff 388 209 276 Bit de- stuffing

module

bit_monitor:bit_err_chk 3 1 1.8 Bit error

monitoring logic

bit_stuff:bt_stf 114 139 129.2 Bit stuffing logic

module

bit_stuff_monitor:stf_error 2 1 1.3 Bit stuffing

monitor module

crc_checker:crc_err_chk 8 1 4.1 CRC Checker

crc_generator:rx_crc 9 15 7.2 CRC calculator

for received

message

crc_generator:tx_crc 9 15 6.6 CRC generator for

transmitted

message

dt_rm_frame_gen:data_remote_frm 254 188 145.4 Data and Remote

frame generator

module

form_checker:frm_error 7 1 4.3 Form checker

module

msg_processor:msg_prsr 25 13 13.4 Message

processor logic

ovld_err_frm_gen:ovld_err 136 66 74.7 Overload and

Error frame

generator module

par_ser_conv:parser 101 97 91.7 Parallel to serial

converter module

registers:reg_file 30 47 19.7 Configuration and

Int.J.Curr.Res.Aca.Rev.2016; 4(7): 76-88

 83

priority setting

data storing

module

rx_buff:rx_buffer 88 183 76.8 Received message

buffer logic

slzd_frm_tx:slzr 7 5 4.3 Serialized frame

transmitter on

CAN bus

synchronizer:synchro 41 26 25.7 Synchronisation at

the receiving end

transmit_buf:tx_buffer 95 96 49.4 Transmit buffer

module

CAN Controller total Logic

Elements

1337 1108 944.3 CAN controller

Top

can_to_avalon_intf 95 258 75.5 Avalon MM Slave

logic

altera_reset_controller 0 3 0.0 Reset controller IP

altera_reset_controller 0 3 0.0 Reset controller IP

CAN_node_D_mm_interconnect 340 579 Avalon MM

interface logic

block IP

CAN Node HPS 1 36 245.7 HPS instantiation

IP

Integrated CAN NODE total

Logic Elements

1773 1987 1266 CAN node Top

Table.2 Maximum achievable frequency

Clock name Clock

description

Maximum Achieved

Frequency

Comments

clk_clk Input Crystal

clock frequency.

170.62 MHz We can raise

maximum input

frequency up-to

170.62 Mhz. But

since our crystal is

of 50 MHz we

restrict the input

clock constraints to

50 MHz

h2f_user0_clk CAN controller

working

frequency

153.3 MHz We can operate our

CAN controller at

150 MHz giving

the Bit rate of 480

Mbps

HPS internal clock

„pll|afi_clk_write_clk‟

HPS working

frequency

717.36 MHz Limited due to

minimum period

restriction

Int.J.Curr.Res.Aca.Rev.2016; 4(7): 76-88

 84

Fig.1 CAN Data frame Format

Interframe

space

Data Frame Interframe

space or

Overload

Frame

Start of

Frame

Arbitration

Field

Control

Field
Data Field

CRC

Field

ACK

Field

End of

Frame

Start of

Frame
11 Bit Identifier RTR IDE r0 DLC

Arbitration Field Control Field Data Field

Arbitration Field ; Standard Frame format 2.0A

Start of

Frame
11 Bit Identifier RTR r1 r0 DLC

Arbitration Field Control Field Data Field

Arbitration Field ; Extended Frame format 2.0B

SRR IDE 18 Bit Identifier

Fig.2 Functional Block diagram of the CAN protocol Controller

Acceptance

Checker

Parameter

Register

Receive Buffer

Transmit Buffer

Receive

CRC

Generator

Message

Processor

Bit De-stuffing

block

Bit

Synchroniser

CRC

Checker

Bit Stuff

Monitor

From

Checker
Bit Monitor ACK Checkr

Parallel to

Serial

convertor

Transmit

CRC

Generator

Error and Overload

Frame generator

Arbitration

Controller

Data and Remote Frame

generator

Bit Stuffing

module

Serialized Frame

Transmitter

Avalon

MM

Slave

HPA -

FPGA

interface

CAN

Bus In

CAN

Bus Out

Hard

Processor

System
Avalon

MM

Interface

Int.J.Curr.Res.Aca.Rev.2016; 4(7): 76-88

 85

Fig.3 Software tools used in this design

Architectural

Design

Verilog

Simulation

Verilog

Simulation

Modelsim

Altera v10.4b

Quartus

Prime Light

Edition 15.1.0

Analysis and

Synthesis

Place and Route

Assembler

Timing Analysis

Waveform

Analysis

Fig.4 Qsys system project for CAN Node implementation.

Int.J.Curr.Res.Aca.Rev.2016; 4(7): 76-88

 86

Fig.5 Quartus Project Pane with Synthesis and Timing reports

Assembler report contains device options of

FPGA configuration such as SRAM based

device or EEPROM based device option. It

also reports the file generated by the

assembler during the current compilation.

Assembler reports the error correction CRC

results for the design when it is turned on in

the Device and Pin Option Dialog box.

Timing analysis reports setup time values,

hold time values, and timing violations if

present, minimum clock to output time

which corresponds to maximum frequency,

longest propagation delay of combinational

logic. And finally it gives the multi-corner

timing analysis summary reports.

Figure.5 shows the CAN controller design

project Quartus II diagram with all reports

generated in the column Table of contains

and the design is successfully compiled.

Synthesis and Timing Results

The design presented in this paper is

implemented in verilog HDL. Described

RTL logic is synthesized in Quartus Prime

15.1 software. As a result of this project

FPGA configuration file

“CAN_node_D.sof” is generated which is

used for programming and configuring the

Cyclone V SoC Chip.

Table.1 results are obtained from Quartus

Prime HDL Compiler fitter report section. It

shows logic utilisation of each block of

CAN controller in terms of number of

Adaptive Logic Module (ALM) after

synthesis. ALM‟s are made up of Look up

tables, multiplexer, adder i.e. combinational

logic and Flip-Flops i.e. sequential logic.

Hence this table gives both logic elements

required in implementation of various logic

blocks.

Int.J.Curr.Res.Aca.Rev.2016; 4(7): 76-88

 87

The Verilog codes are combined with Qsys

design and its AHDL source code which

have several advantages for design and for

designer as well. First advantage is designer

has to just graphically connect the blocks

with custom design which reduces

complexity and time required of

instantiating these module in separate

source code. Second advantage is it become

easier to find out missing connections and

design error while debugging the design.

Timing results for the design are given in

Table.2. These results are obtained from

Time Quest Timing analyzer which works

on synopsys design constraints formats.

These timing constraints to the FPGA

design gives the maximum operating

frequency, setup and hold violation reports

for that particular design.

From the results we can raise our input

frequency to 170 Mhz. But this frequency is

obtained from the external crystal oscillator

so we have to restrict it to 50 Mhz. But we

can operate our CAN controller at 150 MHz

which we are operating at 50 MHz. At

50MHz our bit rate is 160 Mbps but as the

frequency is raised to 150 Mhz the bit rate

becomes 480Mbps. But for this design bit

rate is restricted to 160Mbps

In conclusion, design of CAN controller for

integrated CAN node is successfully

synthesize and fit into Cyclone V SoC

FPGA. This node design is successfully

implemented on DE1-SoC development and

educational board and the can bus signal is

observed in signal tap logic analyzer for its

validity. All the results of this

implementation are reported in this paper.

The implementation result of placement and

routing report shows that a complexity of

logic utilisation is 1266 which is 4% of the

actual logic presents in the FPGA. With this

kind of implementation we can implement

such 25 number of CAN controllers in one

FPGA. Also the rate of bit transmission

could be increased up to 480 Mbps which is

very much higher than the conventional

CAN controller.

References

Barranco, M., Proenza, J. 2006. “An Active

Star Topology for Improving Fault

Confinement in CAN Networks”

Industrial Informatics, Pages 78-85.

IEEE

Bosch Controller Area Network (CAN)

Version 2.0 PROTOCOL

STANDARD.

Carvalho, F.C., Jansch-Porto, I., Freitas,

E.P. 2005. “The TinyCAN: an

optimized CAN controller IP for

FPGA based platforms” Emerging

Technologies and Factory

Automation, Pages 4 pp. – 374 IEEE.

de Lucas, J., M. Quintana “Design of CAN

interface of custom circuits” Industrial

Electronics Society, 1999. IECON '99

Proceedings Pages 662 - 667 vol.2

IEEE.

Duhita, B., Paratane, A.M. Patil. 2016.

“CAN Controller Modelling and

Simulation for its Implementation in

FPGA (SoC) using Verilog for

Integrated CAN Node” Int. J. Curr.

Res. Aca. Rev., 4(3): 76-85.

Dzhelekarski, P., Zerbe, V. 2004. “FPGA

Implementation of Bit Timing Logic

of CAN ControlIer” Electronics

Technology: Meeting the Challenges

of Electronics Technology Progress,

2004Pages 214 - 220 vol.2 IEEE.

Kyung Chang Lee, Hong-Hee Lee

“Network-based Fire-Detection

System via Controller Area Network

for Smart Home Automation”

Consumer Electronics Page 1093 -

1100 IEEE Consumer Electronics

Society.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Barranco,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Proenza,%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Carvalho,%20F.C..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jansch-Porto,%20I..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Freitas,%20E.P..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Freitas,%20E.P..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Freitas,%20E.P..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6620
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6620
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6620
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6620
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Dzhelekarski,%20P..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zerbe,%20V..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9976
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9976
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9976
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9976
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9976
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=30

Int.J.Curr.Res.Aca.Rev.2016; 4(7): 76-88

 88

Obermaisser, R., R. Kammerer. 2010. A

router for improved fault isolation,

scalability and diagnosis in CAN.

Industrial Informatics (INDIN), 8th

IEEE International Conference Pages

123 – 129 IEEE.

Reges, J.E.O., Santos, E.J.P. 2008. “A

VHDL CAN module for smart

sensors” Programmable Logic, 4th

Southern Conference Pages 179 – 182

IEEE.

Salem Hasnaoui, Oussema Kallel. 2003.

“An Implementation of a Proposed

Modification of CAN protocol on

CAN Fieldbus Controller Component

for Supporting a Dynamic Priority

Policy” Industry Applications

Conference, Pages 23-31 Vol.1 IEEE

http://www.can-cia.de 2004.

Homepage of the organization CAN in

Automation (CiA).

SoC Product Brochure- Altera‟s user

customizable ARM-Based SoC from

www.altera.com/products/soc/overvie

w.html.

How to cite this article:

Duhita B. Paratane, A.M. Patil, Jitendra P. Chaudhari. 2016. Advanced Level Modelling and

Simulation of CAN Controller for its Implementation in FPGA (SoC) with Synthesis and

Timing Results for Integrated CAN Node. Int.J.Curr.Res.Aca.Rev.4(7): 76-88.

doi: http://dx.doi.org/10.20546/ijcrar.2016.407.011

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5538458
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5538458
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Reges,%20J.E.O..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Santos,%20E.J.P..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4542975
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4542975
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8893
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8893
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8893
http://www.can-cia.de/
http://www.altera.com/products/soc/overview.html
http://www.altera.com/products/soc/overview.html
http://dx.doi.org/10.20546/ijcrar.2016.407.011

